
What’s up with geom smooth and additive models?

immediate

November 19, 2024

1 Introduction

If you have ever wondered what geom smooth1 actually does or been baffled

by generalized additive models (GAMs), then this blog post is for you. It

is not a comprehensive introduction but is intended as an intuition-building

stepping-stone into the more advanced literature. Michael Clark has written

an elegant and more in-depth introductory blog2, while Simon Wood has

written the bible (Wood, 2017). Be warned, like the New Testament, the

book of Wood is mostly in Greek...

The blog first introduces and compares GAMs to their main competitor,

polynomial regression. From there, we proceed with some concrete examples

where we manually replicate the functionality of geom smooth and mgcv.

Lastly, we cover the central topic of penalized estimation.

2 What are generalised additive models?

Generalized additive models (GAMs) are statistical models specialized in

detecting highly non-linear trends in data. In this regard, they are similar

to polynomial regression, which can be regarded as their main ”competitor”.

Both polynomials and GAMs perform a basis expansion to detect non-

linear patterns. The basis is our measured variable x, which we expand

with additional predictors to enable a non-linear fit. Formally, polynomial

regression and additive models share this basic setup.

y ∼ N (µ(x), , σ), µ(x) =

k∑
i=1

βifi(x). (1)

1A plotting function from ggplot2 in R (Wickham, 2016; R Core Team, 2020).
2https://m-clark.github.io/generalized-additive-models/

1

https://m-clark.github.io/generalized-additive-models/

y is our outcome variable, which we assume to be drawn from a normal

distribution with a mean µ and standard deviation σ. We model µ as a

sum over functions f(x). This is the basis expansion. The parameter k

controls the extent of the basis expansion, and βi is a vector of associated

coefficients. By setting f(x) = xi, we have polynomial regression. In this

case, k controls which polynomial order we are estimating. We will later see

how fi(x) works differently for GAMs.

A central difference between GAMs and polynomials is that polynomials

do global estimation. This means that, for instance, the data points at

x < 2 will affect the fit at x > 10. This global property is easy to see for

linear models. Like a seesaw, we cannot change the slope at x < 2 without

changing it at x > 10. In contrast, GAMs work locally and are more flexible.

The central parameter k controls how flexible and local the fit is by deciding

the how many bins we want to carve the predictor variable up into. In GAM

vocabulary the points separating each bin are called knots and k is then the

number of knots. GAMs fit a model to each bin - hence the local fit. These

local models are then added together to obtain a single statistical model.

Let us illustrate what this means.

For our simulation, we first need some data. In this simple example, we

consider an outcome y and predictor x.

n <- 200 x <- runif(n) true <- 4x + 3x^2 - 3x^3 - 6x^4 y <- rnorm(n, true, 1.5) d <- data.frame(x,y,true)

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
x

y

Condition

True

geom_smooth

Figure 1: 200 data points (dots) simulated from a non-linear function (yellow

line). The red line is the default output of geom smooth. We see it recovers

the relationship well.

Figure 1 shows the true non-linear relationship (yellow) and a sample of

200 data points. The red line visualizes the output of geom smooth, which

recovers the true function well. Computationally, geom smooth is estimated

2

via mgcv::gam3. Our task is to understand mgcv::gam, which we will do by

manually recreating its output. The default setting of geom smooth is to use

a cubic regression spline as its basis function with k = 10 knots. In other

words, geom smooth spreads 10 cubic functions, f(x) = x+ x2 + x3, across

our predictor variable. In Figure 2, we visualize this basis expansion. The

knots are the points where one basis function equals 1 while the others equal

zero. This setup makes GAMs localized, as the fit of the orange-colored basis

functions will not depend on the data in the area associated with the purple

basis functions.

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
x

y

spline

V1

V10

V2

V3

V4

V5

V6

V7

V8

V9

Figure 2: A 10 knot cubic regression spline basis expansion.

The next step is to evaluate each participant on each basis function fi(x).

We can do this in R with smoothCon and obtain an n by k matrix (named

splines in the code below).

splines <- smoothCon(s(x , #predictor

bs="cr", #cubic regression spline

k = 10), #10 knots

data=d)[[1]]$X

The object splines can then be used with lm to estimate β.4 Once

we know β, we can multiply each basis function by its coefficient and sum

everything to achieve our prediction.

lmMod = lm(d$y ~ .-1, data= as.data.frame(splines))

#".-1" means use all variables in the data and omit adding intercept

3With fewer than 1000 observations, geom smooth uses loess regression by default. I’ve

manually overridden this so we use mgcv::gam(x s(x, bs = "cs", k = 10)
4The code is from the technical appendix of Michael Clark’s blog: https://m-clark.

github.io/generalized-additive-models/technical.html

3

https://m-clark.github.io/generalized-additive-models/technical.html
https://m-clark.github.io/generalized-additive-models/technical.html

bscoefs = coef(lmMod) #extracting coefficients

#multiplying basis functions with coefficients

bsScaled = sweep(splines, 2, bscoefs,‘*‘) %>% as.data.frame()

#adding everything -> prediction

bsScaled$sum_spline <- colSums(t(bsScaled))

Figure 3 shows how the coefficients modulate the basis functions and

the resulting overall model in red. In Figure 4, I compare our manually

fitted GAM to geom smooth. As expected, their general pattern is similar;

however, our model is much more ”wiggly.” This difference leads to the

penalized estimation of GAMs.

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
x

y

spline

V1

V10

V2

V3

V4

V5

V6

V7

V8

V9

Figure 3: The 10 basis functions multiplied by their coefficients obtained by

fitting them to an outcome variable. The red line is the sum of the basis

functions and represents the prediction of our model.

2.1 Penalized additive models

Since GAMs are highly flexible, they are susceptible to overfitting, especially

in cases with many knots and few data points. Consequently, selecting the

right number of knots and spacing them correctly might seem like a central

challenge. Luckily, it is not, and GAMs are generally easy to use. The

solution is to use plenty of knots and avoid overfitting through penalized

estimation. Below, I illustrate how penalization works.

When we use lm to estimate our model, it tries to find the model that

has the highest likelihood. This objective pushes the model towards a very

wiggly shape. With penalized estimation, we add an opposing objective

4

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
x

y

Condition

geom_smooth

my_model

Figure 4: To evaluate our custom spline-based model (red), I compare it to

the result of an mgcv::gam().

that favors a smoother/simpler model. We can express the two opposing

objectives mathematically:

(y − g(x, βi))
2︸ ︷︷ ︸

Wiggle

+λ

∫
g′′(x)2︸ ︷︷ ︸

Don’t wiggle

(2)

The first term expresses the goal of minimizing the difference between our

outcome y and our model g(x). The second term is a measure of wiggliness.

If g(x) is a straight line, then g′′(x) = 0. Thus, if g′′(x) 6= 0, then g(x)

has some curvature. By computing the area under the curvature, we can

quantify its amount. The square ensures we get similar results for convex and

concave curvature. By adding this constraint to the minimization problem,

we penalize complicated models and favor simpler ones. The extent to which

we penalize our model is determined by the smoothing parameter λ, which

controls the trade-off between the goals. High values of λ favor a smoother

curve, reducing overfitting but potentially leading to underfitting.

It turns out there is a function that minimizes Equation 2 and is contin-

uous in its first derivative, so we can compute g′′(x). This function is the

cubic spline used by geom smooth.

The question is then how we can implement this insight to make our

wiggly function operate more smoothly. Wood (2017) shows we can compute

a penalty matrix S that allows us to penalize our model without manually

computing second derivatives5.

5Here I switch to matrix notation. Boldface Greek letters (e.g., βββ) denote vectors,

while boldface Roman letters denote matrices (e.g., SSS).

5

∫
g′′(x)2 = βββTSSSβββ (3)

Conveniently, the function we used to compute our splines, smoothCon,

returns SSS. We use the penalty matrix SSS to manually penalize our wiggly

model by appending rows to our data: zeros as outcomes and SSSβββ as predictor

values6. For an explanation of this trick, see the appendix. Similar to

adjusting λ, we can control the penalty by varying the number of times we

append our penalty rows to our data. In the code below, we add penalty

rows 200 times.

Retrieving the penalty matrix S

S = smoothCon(s(x,

bs="cr",

k = 10),

data=d)[[1]]$S[[1]]

lambda <- 200 # smoothing parameter

penalty_mx <- as.data.frame(splines) # new data frame

penalty_mx$y <- d$y # adding outcome variable

zeros <- rep(0, nrow(S)) # vector of zeros

penalty_mx <- as.matrix(penalty_mx)

We add our penalty matrix S and zeros to our data frame

This is done lambda times

for (i in 1:lambda) {

penalty_mx <- rbind(penalty_mx, cbind(S, zeros))

outcome variable is last column in penalty matrix!

}

We re-estimate our GAM model with the penalty rows added

lmMod_pen = lm(y ~ -1 + V1+V2+V3+V4+V5+V6+V7+V8+V9+V10,

data = as.data.frame(penalty_mx)) # regression

bscoefs_pen = coef(lmMod_pen) # extracting coefficients

bsScaled_pen = sweep(splines, 2, bscoefs_pen, ‘*‘) %>%

as.data.frame() # multiplying basis functions with coefficients

bsScaled_pen$sum_spline_pen <- colSums(t(bsScaled_pen))

We can now evaluate our penalized model, which should give similar

results as geom smooth. In Figure 5, we see our penalized model together

6I do not recall where I saw this trick, but it is not mine.

6

with geom smooth and the unpenalized version of our model. As expected,

the green model (our penalized model) and the red model (geom smooth)

are almost indistinguishable.

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
x

y

Condition

geom_smooth

my_model

my_penalty

Figure 5: The 10 basis functions multiplied by their coefficients obtained by

fitting them to an outcome variable. The red line is the sum of the basis

functions and represents the main prediction of our model.

The final issue, which I won’t go into detail about, is how to choose the

smoothing parameter λ. mgcv optimizes a smart and fast cross-validation

criterion to identify the optimal λ. This means the user does not have

to specify any hyperparameters to estimate a GAM model. In my model, I

tinkered around until I found the value (lambda=200) that yielded agreement

with geom smooth.

3 Conclusion and practical considerations

GAMs are extended linear models where we divide the predictor into re-

gions and fit separate models to each region before piecing it all together.

This results in a flexible model that is effective at recovering non-linear

trends. The penalties and cross-validation criterion decrease the chances of

overfitting and make the model easy to use. In comparison with polynomial

regression, I find GAMs simpler, as you do not need to fit several models and

do model comparisons. In terms of fit, I’ve generally found that GAMs and

polynomials yield highly similar results. However, I’ve only studied simple

cases with a few predictors and relatively simple non-linear relationships.

7

4 Appendix

We can understand the trick of appending SSSβββ to our predictors to penalize

our model as follows. First, consider the standard linear model. In the case

of GAMs, x and z are two basis expansions.
y1
y2
. . .

yn

 =


x1
x2
. . .

xn

β1 +


z1
z2
. . .

zn

β2 + ε. (4)

Equation 3 shows we can compute the wiggliness score by multiplying

our coefficients by our penalty matrix. To illustrate, assume SSS =

[
s1 s2
s3 s4

]
and βββ =

[
β1 β2

]
. We then compute the wiggliness score as follows:∫

g′′(x)2 = SSSβββ =

[
s1β1 + s2β2
s3β1 + s4β2

]
.

If this expression is zero, the overall function is a straight line. Thus, we

can shrink or penalize our GAM by appending rows of

[
0

0

]
=

[
s1
s2

]
+

[
s3
s4

]
to our model from Equation 4 as follows:

y1
y2
. . .

yn
0

0


=



x1
x2
. . .

xn
s1
s2


β1 +



z1
z2
. . .

zn
s3
s4


β2 + ε.

The more times we append rows, the more we favor a smooth model over

a wiggly one.

8

References

R Core Team (2020). R: A language and environment for statistical com-

puting. manual, Vienna, Austria. tex.organization: R Foundation for

Statistical Computing.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-

Verlag New York.

Wood, S. (2017). Generalized additive models: An introduction with R.

Chapman and Hall/CRC, 2 edition.

9

	Introduction
	What are generalised additive models?
	Penalized additive models

	Conclusion and practical considerations
	Appendix

